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Abstract 

Introduction: Quantitative metabolomics 
reference data is scarce. Reliable reference 
data is important for validating metabolic 
biomarker signatures and to facilitate the 
evaluation of epidemiological cohort 
studies. The Quantitative Metabolomics 
Database (QMDB) provides quantitative 
ethylenediaminetetraacetic acid (EDTA) 
plasma metabolite concentration ranges for 
healthy human adults derived from analyses 
using the biocrates standardized MxP® 
Quant 500 kit. The samples were obtained 
from >1,000 healthy adults of all ages, using 
controlled epidemiological study data 
provided by several collaborating scientific 
institutes and universities. 

Aim: This application note describes the 
QMDB and discusses its suitability as a 
reference in studies without a healthy 
control group. It also demonstrates how the 
QMDB can be used to validate the 
metabolomic results for a given control 
group as being within typical range. 

Methods: The attributes of QMDB subjects 
were analyzed with descriptive statistics. 
Using principal component analysis (PCA), 
the metabolomes of the QMDB subjects 
were compared to those of several other 
healthy control groups. Metabolomics-
based sample quality markers were 
assessed. The metabolite concentration 
ranges in the QMDB were statistically 

compared to those from other databases or 
publications to assess their fitness for 
purpose. Finally, the QMDB data was put to 
the test in a case study. 

Results: In the principal component analysis 
(PCA), the QMDB displayed high similarity 
to the other healthy control groups 
assessed. Only a small proportion of the 
QMDB mean concentrations (3-7%) were 
markedly different from those in other 
datasets. No outliers were detected. None 
of the QMDB samples had critical sample 
quality issues.  

The concentration ranges observed in a 
study control group were successfully 
validated using the QMDB reference 
ranges. In a case study of patients with 
inflammatory bowel disease (IBD) without a 
control group, using the QMDB ranges as 
reference values resulted in the 
identification of significant differences 
previously described in a similar context. 

Conclusion: The QMDB is suitable for use as 
a quantitative metabolomic reference 
database providing representative 
concentration ranges for the healthy 
population and customized subpopulations. 
The development of the QMDB thus 
represents an important step toward 
standardization in metabolomics.   
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1 Introduction 

1.1 Background 

Metabolomics profiling tools are used for 
the simultaneous quantification of 
metabolites representing the final or 
intermediate products of upstream 
biological processes. Studying metabolism 
contributes to the understanding of cellular 
processes and the influence of external 
factors (1).  

While genomics reveals the probability of 
individuals developing certain physical 
traits and diseases, metabolomics provides 
a real-time snapshot of their actual current 
phenotype, influenced by genetics, lifestyle, 
and the environment, including pathogens, 
diet, and medication. Countless 
publications have shown that these factors 
can significantly alter metabolite 
concentrations (2, 3).  

The metabolomes of body fluids have 
generated particular interest because these 
samples are readily available. Due to the 
accurate information it provides about a 
patient’s physiological state, this data has 
the potential to be used for clinical 
diagnosis (4). Metabolomics is already 
commonly used for selected diagnostic 
purposes in clinical practice, such as 
newborn screening for genetic diseases (5), 
but its broader uptake in diagnostics has 
been hampered by the limited 
comparability and reproducibility of results 
produced at different sites with different 
cohorts. Fortunately, work has been done to 
help alleviate these pain points in recent 
years, and metabolomics is now widely 
viewed as a potential driver of cutting-edge 
developments such as precision medicine 
(6). 

 

Cutting-edge metabolomics technology 

Liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) platforms are the 

most widely used for metabolomics studies 
and often provide better sensitivity and 
metabolite coverage compared to other 
techniques. Until the early 2000s, 
researchers had to opt for either untargeted 
metabolomics, measuring the relative 
concentration changes of many 
metabolites, or targeted metabolomics, for 
the absolute quantification of a small, 
predefined number of metabolites. Since 
then, biocrates life sciences has developed 
several metabolomic kits for mass 
spectrometry that enable researchers to 
determine the absolute concentrations of a 
broad range of metabolites. Several 
interlaboratory ring trials using plasma and 
serum samples have proven that these kits 
enable robust and reproducible metabolite 
quantification, and yield comparable results 
when measured at different laboratories 
and with different instruments (7–9). 

 

Reference ranges for metabolite 
concentrations 

This measurement approach opens up the 
possibility of establishing a new norm in 
obtaining reliable and reproducible 
metabolite concentrations. Clearly defined 
metabolite concentration ranges for healthy 
individuals could be used as reference 
values, a concept that has gained universal 
acceptance as one of the most powerful 
ways in which laboratory medicine can 
contribute to the clinical decision-making 
process (10).  

Consequently, a number of publications 
have attempted to identify typical human 
plasma metabolite concentrations of this 
kind (11–14). However, the published mean 
concentration values for biocrates kit 
metabolites are heavily dependent on the 
characteristics of the respective study 
participants and are only of limited use to 
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other researchers. The Human Metabolome 
Database (HMDB; www.hmdb.ca) brings 
together mean metabolite concentrations 
and concentration ranges from diverse 
publications of varying quality, obtained 
with various methods. The resulting ranges 
thus lack consistency, and it is difficult for 
users to decide which of the listed ranges 
best applies to their study, if any. The jMorp 
database (jmorp.megabank.tohoku.ac.jp) 
developed by researchers from Tohoku 
University provides metabolite 
concentration ranges from a large group of 

well-characterized samples quantified in 
their research laboratory , but this resource 
is limited to Japanese participants and does 
not offer customized sample selection.  

There was therefore no way for the 
metabolomics community to access 
metabolite reference ranges from healthy 
participants in quality-controlled studies 
that were customizable and easy to use. 
biocrates developed the Quantitative 
Metabolomics Database (QMDB) in 
response to this need. 

1.2 What is the QMDB? 

The QMDB provides a collection of 
metabolite concentration ranges from 
healthy human individuals whose EDTA 
plasma samples have been measured using 
the MxP® Quant 500 or AbsoluteIDQ® p180 
kits. Version 1.0 of the database contains 
samples from 1,082 adult humans of various 
ages obtained in collaboration with several 
scientific institutes and universities. In this 
context, healthy is defined as meaning that 
the participants underwent medical 
screening and were assessed as having no 
current or chronic physical or mental 
illness. Users can view the typical 
concentration range for any kit metabolite. 
Concentrations of individual samples are 
not provided. 

 

Filter options for customized reference 
ranges 

One of the QMDB’s unique advantages is its 
filter options menu, which enables users to 
define subgroups of the healthy population 
to be used to calculate customized 
reference ranges. Users can set a desired 
range for age and body mass index (BMI), 
and filter by sex and/or race/ethnicity. 
They can also restrict the sample selection 
based on fasting status at the time of 
collection as well as lifestyle factors 
including fitness, alcohol consumption, and 
smoking status. The display options allow 

users to restrict the metabolites or 
metabolite classes displayed, making it easy 
for them to focus on their metabolites of 
interest. The selected options can then be 
saved in the menu ready for their next visit, 
and users can switch between their saved 
subpopulations with a single click. 

 

Concentration range table and 
descriptive statistics 

After selecting the matrix of interest 
(currently only human EDTA plasma) and 
optional filters, the concentration range for 
each metabolite is calculated and displayed 
in a table. The concentration range table 
can be sorted individually and provides 
descriptive statistics for values including 
the mean, median, minimum, maximum, 

first and third quartiles and standard 
deviation. The number of samples, the 
percentage of samples above the limit of 
detection (LOD), and the typical LOD 
threshold are also provided for each 
metabolite. Users have the option to display 
the identifiers that link the metabolites to 
the corresponding entry in the HMDB 
database. The table can be exported as a 
text, CSV, or Excel file, and includes a 
summary of the selected filters for future 
reference. 

 

https://hmdb.ca/
https://jmorp.megabank.tohoku.ac.jp/
https://biocrates.com/mxp-quant-500-kit/
https://biocrates.com/absoluteidq-p180-kit/
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Data visualization and comparative 
statistics 

The QMDB comes with an Excel template 
for visualizations and statistics that makes it 
easy for users to exploit the export file to 
draw boxplots showing concentration 
distributions. This can be downloaded from 
the online user manual. The Excel template 
also allows for direct side-by-side 
comparison of QMDB-derived 
concentration ranges with users’ own data, 
or to compare different subsets exported 
from the QMDB. 

The database also gives users the option to 
generate the mean and standard deviation 
from logarithmically transformed (log2) 
concentration values. The log 
transformation establishes the normal 
distribution of the concentration data, 
which is required for parametric statistical 
tests. The Excel template also contains a 
worksheet that facilitates statistical 
comparison of means based on mean 
concentration, standard deviation, and 
number of samples (15, 16). This enables 
users to perform basic comparative 

statistics and to identify any significant 
concentration differences. 

 

An ever-growing resource 

The QMDB data will be supplemented with 
further eligible samples from other studies 
on a regular basis, making the reference 
ranges even more accurate over time and 
ensuring that the concentration ranges 
remain reliable even when working with 
granular filters. However, users will also 
have the option of reverting to an older 
version of the database if they want to 
repeat a reference range calculation 
conducted at an earlier stage.  

Anyone using a biocrates kit to measure 
values for healthy human subjects is 
encouraged to provide their data for the 
reference database and thus contribute to 
improving its quality. Contributors will 
receive a special discount on QMDB access 
and can use its features to filter for their 
own data, making it easier to compare to 
the total reference database. 

 

 

2 Sample selection and demographics of the QMDB 

To establish the QMDB as a reference 
database with a sufficiently large number of 
well-characterized samples from healthy 
participants, biocrates collaborated with 
the National Institutes of Health (NIH) and 
various universities, who contributed data 
from epidemiological studies to the QMDB.  

Several thousand EDTA plasma samples 
from several studies were measured using 
the biocrates standardized MxP® Quant 500 
kit at different centers. Since some of the 
contributing institutions required 
confidentiality to be maintained, we are 
unable to disclose how many samples from 
which studies contributed to the QMDB.  

For Version 1.0 of the QMDB, 1,082 
participants were selected, for whom the 
majority of the following data was available: 
sex, age, BMI, fasting status, 
race/ethnicity, fitness, smoking status, and 
number of alcoholic drinks per week. A 
considerable proportion of these samples 
were contributed by the NIH and were 
acquired only from participants that met 
the “IDEAL” standard established by NIH 
scientists (17). The demographics of the 
participants included in the QMDB are 
shown in Figure 1. 
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Figure 1: Breakdown of demographic characteristics. In Version 1.0 of the QMDB, the healthy human participants 
from whom the EDTA plasma samples were derived (n = 1,082) are categorized by sex, age, BMI, fasting status, 
race/ethnicity, fitness, smoking status, and number of alcoholic drinks per week.  

 

Sample storage 

As part of the studies contributing to the 
QMDB, the EDTA plasma samples were 
collected in accordance with guidelines for 
biomarker studies (18). As per the 
protocols, blood samples were immediately 
stored at 4°C and centrifuged within 4 
hours from collection. After centrifugation, 
the plasma was immediately aliquoted and 
frozen at −80°C. The samples underwent no 
more than two freeze-thaw cycles prior to 
metabolomic quantification. The sample 
storage time before analysis was available 
for 63% of the samples and ranged between 
0.9 and 14.1 years, with an average of 7.2 
years. 

 

General observations 

The demographics of the QMDB data were 
not expected to reflect the general 
population, since only samples from healthy 
participants were included and the 
individuals enrolled in the studies were 
primarily older white adults.  

The distribution of metabolite 
concentrations may thus be biased due to 
imbalances in the age, BMI, race/ethnicity, 
and lifestyle parameter categories. While 
this may skew the calculated mean and 
median concentrations, the total 
concentration ranges (minimum and 
maximum concentrations) in the database 
should not be markedly affected. 

 

Sex 

The QMDB currently contains slightly more 
samples from women than from men. As sex 
is one of the main confounders in biological 
studies, users are encouraged to study 
effects not only in both sexes together, but 
also in men and women separately. This can 
easily be done using the filter options to 
generate female and male sets of reference 
ranges. 

 

Age 

The average age of participants was 64.9 
years. Since no participants <20 years of 
age were included, this is much higher than 
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in the general population (41.8 years in 
developed countries in 2020) (19). For the 
oldest age category (90–99 years), it was 
difficult to identify participants with no 
medical conditions. The decision was 
therefore taken to include participants who 
were healthy but had previously undergone 
a surgical procedure such as hip 
replacement or hernia repair and had made 
a full recovery at the time of sample 
collection. Controlled hypertension was also 
omitted from the exclusion criteria. 

 

BMI 

The threshold for excluding participants 
from the QMDB was set to BMI ≥35, which is 
the definition of severe obesity according to 
the World Health Organization (WHO) (20) 
and is frequently used as a threshold for 
morbid obesity in modern medicine (21, 
22). The mean BMI of the QMDB 
participants was 26.5, which is considered 
overweight in the adult population, but 
appears to be accepted as healthy in 
individuals over 60 years of age (23). 

 

Fasting status 

Most of the samples currently included in 
the QMDB were obtained from fasting 
individuals, since this was a requirement of 
the sample collection protocols used in the 
studies. Fasting status was unknown for 
only 5% of the samples. Venous blood 
samples were collected in the morning after 
an overnight fast. Participants were not 
allowed to smoke, engage in physical 
activity, or take medication before the 
blood sample was collected. 

 

Race and ethnicity 

The majority (65%) of the QMDB 
participants were White and of Caucasian 

descent. A minority was of Hispanic/Latino 
origin. Black or African American 
participants represented 27% of those 
providing samples to the QMDB. There are 
plans to expand the races and ethnicities 
represented in the QMDB in the future. 

 

Fitness 

Fitness was assessed with questionnaires 
regarding the performance, frequency, or 
duration of various high-intensity activities. 
Based on this, the participants were 
categorized as “not active”, “moderately 
active”, “active”, or “highly active”. The 
categorization based on high-intensity 
activities correlates with overall physical 
activity, which was also estimated from the 
questionnaire. It should be noted that even 
participants in the highest category were 
not typically athletes, but simply more 
active than average. It is also important to 
note that for samples from other studies 
added to the QMDB in the future, fitness 
may not have been assessed in the exact 
same way. The fitness categories should 
therefore be viewed as approximate labels. 

 

Smoking status and alcohol 
consumption 

The smoking status and drinking behavior of 
participants is also included in the QMDB. 
As with physical activity, this information 
was self-reported, so it is possible that 
participants under- or overestimated their 
smoking status and alcohol consumption. 
We note that only 3% of the participants 
were current smokers, which is likely 
connected to the fact that smoking 
increases the risk of a whole host of 
diseases, and thus only a fraction of 
smokers was healthy enough to be eligible 
for the database. 
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3 Validation of the QMDB data 

3.1 Aim 

The QMDB was developed with the aim of 
defining metabolite concentration ranges 
for healthy individuals and making these 
available as reference ranges for studies 
measured with quantitative metabolomics, 
in particular those using biocrates 
technology, independently of the sample 
collection site and measuring laboratory. 
Researchers are naturally hesitant to rely on 
external reference values in scientific 
studies since experience has shown that 
external controls are usually less suitable 

than controls obtained in the same study. 
This is especially true for metabolomics, 
since the harmonization of metabolite 
measurements obtained by different 
laboratories has historically been a 
challenge. 

The validation work therefore focused on 
assessing whether the QMDB metabolite 
concentration ranges were comparable to 
the concentration ranges for independent 
healthy control groups from other studies. 

3.2 Methods 

External datasets 

The QMDB data was compared to six other 
datasets comprising plasma metabolite 
concentration values for healthy control 
cohorts. To maximize the number of 
metabolites common to the QMDB and 
each dataset, the search for these datasets 
was limited to studies with metabolomics 
quantification using the MxP® Quant 500 or 
AbsoluteIDQ® p180 kits, as the entire set of 
AbsoluteIDQ® p180 metabolites is covered 
by the MxP® Quant 500 panel. 

Dataset 1 (Q500) originated from a ring trial 
in which the performance of the MxP® 
Quant 500 kit was tested in different 
laboratories with different instruments 
using the same samples (manuscript in 
preparation). These EDTA plasma samples 
were commercially obtained and from 
healthy volunteers: three male and three 
female participants. The study also included 
measurements of SRM 1950, a standard 
reference plasma for metabolomics 
research developed by the National 
Institute of Standards and Technology 
(NIST), in collaboration with the NIH, to 
support technological developments in 
metabolomics research (24). These samples 
were measured in triplicate. 

Dataset 2 (Neuro) originated from a study of 
age-related neurological disorders, 
comprising a control group of 68 healthy 
adults whose EDTA plasma samples were 
measured at biocrates laboratories using 
the AbsoluteIDQ® p180 kit. No metadata – 
such as sex, age, BMI, or lifestyle 
parameters – was available for these 
samples. Quality control identified 4 
samples with lipemia and 9 samples with 
low sample quality; these were removed 
prior to statistical analysis, leaving a total of 
55 samples. 

Dataset 3 (Nutr1) originated from the 
Karlsruhe Metabolism and Nutrition 
(KarMeN) study. A subset of values 
produced using the AbsoluteIDQ® p180 kit 
was taken from a publication (25) 
describing 252 EDTA plasma samples from 
healthy adults: 150 men and 102 women, 
non-smoking, predominantly White, with a 
mean age of 45.9 years and a mean BMI of 
23.9, considered to be healthy based on 
anthropometric, clinical, and functional 
assessments. 

Dataset 4 (French) was taken from a 
published study conducted by the Institut 
Servier of 800 healthy French volunteers 
aged between 18 and 86, with an even 
distribution by sex, not on any medication 
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and considered to be healthy on the basis of 
their medical history, clinical examination 
and standard laboratory tests (12). The 
EDTA plasma samples were measured with 
the AbsoluteIDQ® p180 kit. 

Dataset 5 (Nutr2) comprised data from the 
A-DIET Confirm study conducted in Ireland. 
This included 186 healthy men and women, 
aged between 18 and 60 years, with a BMI 
in the range of 18.5−30 and not consuming 
any supplements or prescribed medication. 
The lithium-heparin plasma samples for 
these participants were measured using the 
AbsoluteIDQ® p180 kit (14). 

Dataset 6 (Japan) was downloaded in 
January 2022 from the jMorp database, 
which contains metabolome and proteome 
data for plasma samples obtained from 
healthy Japanese volunteers from the 
Tohoku Medical Megabank Cohort Study 
(26). The concentration ranges obtained 
from measuring up to 7,079 samples (34% 
male, 66% female) with the MxP® Quant 
500 kit were downloaded and used for 
analysis. 

 

Assessing sample quality 

Twenty years’ experience in metabolomics 
enables biocrates to identify metabolic 
markers of reduced sample quality. The 
quality of plasma samples may be reduced 
at an early stage, for instance if blood 
samples are left at room temperature for 
several hours after the blood draw before 
being processed to plasma by 
centrifugation, or if the plasma is not frozen 
at -80°C or below within an acceptable time 
after centrifugation (27, 28). Sample quality 
is also reduced by repeated thawing and 
freezing, for example due to repeated 
aliquoting or shipping samples to different 
laboratories without enough dry ice. The 
identity of these markers, which consist of 
metabolite concentrations as well as their 
sums and ratios, are not disclosed here 
since this is unpublished internal 
knowledge. 

For Datasets 1-3, the metabolite 
concentrations from the individual sample 
measurements were available, enabling 
sample quality analysis. We assessed the 
metabolite concentrations and metabolite 
ratios known to be altered if samples are 
not processed in time or undergo several 
freeze-thaw cycles and removed low-quality 
samples prior to data analysis. 

 

Statistical analysis 

All of the datasets were compared to the 
QMDB metabolite concentration ranges. 
First, only the metabolites present in both 
the external dataset and the QMDB were 
considered in the comparison. The 
metabolite PC ae 38:1 was excluded from 
further analysis since its concentrations 
were consistently markedly higher in the 
AbsoluteIDQ® p180 datasets than in the 
MxP® Quant 500 datasets. Side-by-side 
boxplots were then created using the Excel 
template for visualizations and statistics 
linked to from the QMDB user manual. The 
resulting p values were adjusted for multiple 
testing using the established Benjamini & 
Hochberg method (29). 

The following three criteria were used to 
identify metabolites with markedly different 
concentration ranges when comparing the 
external datasets with the QMDB:  

− At least a 1.5-fold difference 
between the mean concentrations. 

− Statistical significance after 
correcting for multiple testing (q < 
0.01). 

− No overlapping of the standard 
deviations for the mean 
concentrations. 

We set a comparatively strict significance 
threshold to allow for the fact that even 
small fold changes easily become 
statistically significant due to the large 
sample size. We expected the QMDB 
metabolite concentration ranges to fit the 
ranges for the external healthy control 
datasets relatively well. An acceptance 
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threshold was thus defined to allow a 
maximum of 10% of the metabolite 
concentration ranges assessed to be 
markedly different between the QMDB 
compared to any of the external datasets. 
Percentages were used instead of the 
metabolite count to accommodate the fact 
that two of the control datasets were 
derived using the MxP® Quant 500 kit and 
four using the AbsoluteIDQ® p180 kit, 
which covers considerably fewer 
metabolites.  

An outlier analysis was conducted for the 
mean concentration values from the various 
datasets by calculating Tukey’s fences (30), 
using conventional Tukey’s fencing (k = 
1.5). This method works best with nine or 
more data points but can be applied to 
datasets with as few as five data points, 
although the number of outliers may be 
slightly overestimated in such cases (31).  

This analysis was conducted for 146 
metabolites for which mean concentration 
values were present in the QMDB dataset 
and four or more of the external datasets. 
While this method is very good at detecting 
outliers when most of the mean 
concentrations are in a similar range, 

extreme values are not recognized as 
outliers if there is high variance between 
the values in the different datasets. To 
identify mean concentrations that were very 
different from the means in the other 
datasets but were not identified as outliers 
using the Tukey’s fences method, for all 163 
metabolites for which values were present 
in at least three datasets, the mean 
concentration in each dataset was 
compared to the consensus concentration 
across the datasets, calculated as the 
median of the mean concentrations. A 
threefold difference was set as the 
threshold for extreme values. 

Based on the individual sample 
measurements available for Datasets 1-3, a 
principal component analysis (PCA) was 
also performed, which provided an 
informative overview of compatibility with 
the QMDB. As a PCA cannot handle values 
that are missing because they were < LOD, 
the datasets were cleaned, removing all 
metabolites for which less than 80% of the 
values were above the LOD. Missing values 
in the remaining metabolites were imputed 
between LOD and LOD/2 using a logspline 
imputation method (32). 

3.3 Results and discussion 

Sample quality 

Table 1: Percentage of samples with high quality. 
Based on metabolomically assessed quality markers, 
sample quality was determined for four datasets 
(QMDB, Q500, Neuro, and Nutr1). 

Dataset High-quality sample score 

QMDB 100% 

Q500 100% 

Neuro   87% 

Nutr1 100% 

 

Table 1 shows the percentage of high-
quality samples in each dataset as assessed 
based on the quality markers. The sample 

quality was very good (100%) in three 
datasets (QMDB, Q500, and Nutr1), while 
the Neuro dataset had the lowest score 
(87%), with nine samples identified as being 
low-quality. As noted in the section above, 
these were removed from the dataset before 
statistical analysis. 

 

Principal component analysis 

PCA was used to visualize and compare the 
QMDB data with each of the six external 
datasets, and to examine the homogeneity 
of the datasets that were compiled to create 
the QMDB. All concentrations were target-
normalized to biocrates quality control level 
2 (QC2) samples, as is required for all MxP® 
Quant 500 measurements. 
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Figure 2: Comparisons of datasets using PCA: (A) Comparison of the four QMDB subsets, and (B-D) comparison of 
the QMDB samples with the external datasets 1 (Q500), 2 (Neuro), and 3 (Nutr1). 

The four subsets included in the QMDB are 
shown in Figure 2A. The high degree of 
overlap between the subsets demonstrates 
the comparability of the target-normalized 
MxP® Quant 500 results across the studies. 

The results for the external validation of the 
QMDB differed between the three datasets. 
Like the QMDB, Dataset 1 (Q500) consisted 
of metabolite data acquired with the MxP® 
Quant 500 kit and target-normalized to 
biocrates QC2 samples. A high similarity of 
the sample metabolomes was consistently 
observed across both datasets (Figure 2B). 

Dataset 2 (Neuro) was acquired with the 
AbsoluteIDQ® p180 kit and target-
normalized to biocrates QC2 samples. The 
MxP® Quant 500 kit covers all of the 
metabolites included in the AbsoluteIDQ® 
p180 kit, and both kits yield absolute 

concentrations. The results should therefore 
be compatible, and the two datasets did 
indeed show almost complete overlap 
(Figure 2C). Overall, the sample diversity of 
the QMDB was higher than that of Datasets 
1 and 2 (Figure 1B-C), reflecting the greater 
diversity of participants. Dataset 3 (Nutr1) 
was also acquired with the AbsoluteIDQ® 
p180 kit but normalized to internal controls. 
Interestingly, the concentrations detected 
in this dataset were far less comparable to 
those of the QMDB (Figure 2D). The PCA 
loading plots (not shown) revealed 
differences in the concentration ranges 
between the two datasets for numerous 
metabolites, especially 
phosphatidylcholines (PCs). Although most 
of the differences were not large on a single 
metabolite basis, taken together they 
resulted in a clear separation of the 
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samples, since PCs are the largest 
metabolite class covered by the 
AbsoluteIDQ® p180 kit. 

It seems likely that the different 
normalization strategy employed for 
Dataset 3 was the cause of the difference in 
the metabolite concentrations. As this was 
the only dataset for which a separation was 
seen, we are unable to determine the 
reason for this deviation with certainty. 
However, we would encourage QMDB users 
to employ target normalization to QC2 
samples whenever possible, to guarantee 
optimal comparability with QMDB datasets. 

We note that the QMDB sample distribution 
in the PCA and the variability explained by 
the first two principal components in 
Figures 2A and 2B were identical, indicating 
that the addition of the few extra samples 
from Dataset 1 did not impact the overall 
dataset variability. Datasets 2 and 3 
included more samples, and only the QMDB 
metabolites present in these p180 datasets 
were included in the analysis, resulting in 
markedly different sample distribution and 
variability explained by the first two 
principal components in Figures 2C and 2D. 

 

Comparison of metabolite 
concentration ranges 

Using the QMDB Excel template for 
visualizations and statistics, we generated 
side-by-side boxplot comparisons of the 
metabolite concentration ranges from the 
QMDB and the six external control datasets. 
Representative examples for polar 
metabolites analyzed with LC-MS/MS and 
lipids analyzed with flow-injection analysis 
(FIA) MS/MS are shown in Figure 3. 

Generally, the metabolite concentration 
ranges from the QMDB and the external 
datasets were highly comparable to one 
another. Five amino acids were used as 
example LC-MS/MS metabolites. These are 
quantified using a seven-point calibration 

curve, resulting in quantitative 
concentrations with very low coefficients of 
variance (CV). Dataset 1 (Q500) displayed 
slightly lower aspartic acid (Asp) 
concentrations than the QMDB (Figure 3A), 
but this was not observed with Datasets 2-4. 
Similarly, Dataset 2 (Neuro) displayed a 
slightly lower median for asparagine (Asn) 
concentrations, and Dataset 3 (Nutr1) had a 
slightly higher median for arginine (Arg), 
which was not observed in the other 
datasets. The amino acid concentration 
ranges in Dataset 4 (French) corresponded 
to those in the QMDB. It should be noted 
that cysteine (Cys) concentrations were 
absent from Datasets 2-4 because cysteine 
is not covered by the AbsoluteIDQ® p180 
kit. 

Several acyl-alkyl-phosphatidylcholines (PC 
ae) were selected as examples of 
metabolites measured with FIA-MS/MS. 
These are quantified using a one-point 
calibration, resulting in quantitative 
concentrations that may have a slightly 
higher CV. In Dataset 1 (Q500), the PC 
concentrations were very similar to those in 
the QMDB (Figure 3B). In Dataset 2 (Neuro) 
and Dataset 4 (French), the median 
concentrations were sometimes slightly 
higher for some PCs, but still very similar 
overall. The PC concentration ranges for 
Dataset 3 (Nutr1) were higher than in the 
other datasets. This was consistent for 
most, but not all, PCs. Other metabolite 
classes did not show a similar shift. This 
shift toward higher PC concentrations is the 
most probable cause for the separation of 
Dataset 3 from the QMDB in the PCA. 

As expected, the concentration ranges 
varied between metabolites. However, the 
boxplots shown in Figure 3 demonstrate 
that, although the QMDB comprises several 
datasets characterized by a broad range of 
ages, races/ethnicities, and other factors, 
this did not result in a larger variance in the 
concentration range of single metabolites 
compared to the smaller, less diverse 
external datasets. 
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Figure 3: Comparison of metabolite concentration ranges across the datasets: (A) concentration ranges of the 
amino acids alanine (Ala), arginine (Arg), asparagine (Asn), and aspartic acid (Asp) analyzed with LC-MS/MS and 
(B) five PC ae analyzed with FIA-MS/MS in the QMDB and external control datasets 1-4. 

 

For Datasets 5 and 6, only the medians and 
standard deviations were available, making 
the plots less informative and more difficult 
to read. They are therefore not shown here. 
The crucial question as to whether any of 
the differences in the concentration ranges 
were statistically significant was however 
assessed for all datasets. 

The percentages of metabolites with a 
significantly and markedly different 
concentration range (as defined in the 
Methods section) across the six external 
control datasets and the QMDB are shown 
in Figure 4. 

The proportion of markedly different 
concentration ranges was 6.3% or lower for 
all six datasets, meaning that the 10% 
threshold was not crossed. The QMDB thus 
met the validation criteria, indicating that 
its concentration ranges were sufficiently 
similar to those of the other control 
datasets. With a proportion of markedly and 
significantly different metabolite 
concentration ranges of around 2%, Dataset 
4 (French) was the healthy control dataset 
with the most similar concentration ranges 
to the QMDB. 
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Figure 4: Proportion of markedly different metabolite concentration ranges. The percentage of metabolites with 
markedly different concentration ranges between the QMDB and external datasets 1-6 was assessed according to 
the defined criteria. An acceptance threshold was set at a maximum of 10% (red line). 

Very few significantly and markedly 
different metabolite concentration ranges 
were identified when comparing the QMDB 
with Datasets 1 and 4. Datasets 2, 5, and 6 
had around 6% significantly and markedly 
different metabolite concentration ranges. 
Contrary to expectation, the percentage of 
different metabolites in Dataset 3 (Nutr1) 
was not found to be higher than the other 
datasets, even though its metabolome 
appeared to be quite different from the 
QMDB in the PCA. This discrepancy is due 
to differences in data handling. Dataset 3 
differed from the QMDB mainly in the 
concentrations of PCs, which were higher, 
and fewer values were below the LOD 
compared to the QMDB. Values below the 
LOD were imputed for the PCA, leading to 
lower PC concentrations for the QMDB. For 
the comparison of means, only the 
measured values were considered and 
values below the LOD ignored. 
Consequently, there were fewer differences 
between the QMDB and Dataset 3.  

 

Detection of outliers and extreme 
values 

The QMDB dataset and the six external 
control datasets were subjected to an 

outlier analysis. The mean concentrations of 
each metabolite were compared across all 
seven datasets, and single metabolites in 
the dataset were flagged as outliers. All 
metabolites identified as outliers were 
excluded from the subsequent calculation 
of extreme values. The outliers identified 
among the 146 metabolites tested and the 
extreme values in each dataset for the 163 
metabolites tested are displayed in Figure 
5. In total, 121 metabolites were detectable 
across all seven datasets. 

No outliers were detected among the mean 
concentrations of metabolites in the QMDB 
dataset. Only one was identified as an 
extreme: the mean concentration of the 
sphingomyelin SM 22:3 was just under one-
third of the median mean concentration. 
Similarly, only one outlier was identified in 
Dataset 4 (French). The other datasets had 
three to five metabolites with mean 
concentrations markedly different from the 
other datasets. These results indicate that 
the QMDB and Dataset 4 are the two most 
representative datasets of all the healthy 
control datasets considered in this study. 
The below-average outlier count of the 
QMDB confirms its suitability as a reference 
database. 
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Figure 5: Detection of outliers and extreme values. Some mean concentrations of metabolites were detected as 
outliers (blue) and extreme values (green) in the QMDB and external datasets 1-6. 

3.4 Evaluation 

The results of this validation show that the 
QMDB metabolite concentration ranges are 
comparable to the concentration ranges of 
independent healthy control groups from 
different studies. All of the samples 
included had sufficiently high sample 
quality according to our quality markers. 
The PCA found that the metabolomes of the 
datasets used to compile the QMDB were 
very similar to one another. When the entire 
QMDB dataset was compared to another 
independent MxP® Quant 500 control 
dataset (Dataset 1), the metabolomes were 
also comparable according to the PCA. 

The only suboptimal result was the 
separation between the QMDB samples and 
the samples from Dataset 3 based on the 
metabolome in the PCA. A shift in the 
metabolite concentration ranges for several 
lipids in Dataset 3 compared to the QMDB 
appears to have been responsible for this. In 
the statistical comparison of means, 
Dataset 3 did not stand out, but this was 
because values below the LOD were not 
considered. The differences may be 
connected to the fact that the metabolite 
concentrations in this dataset were not 
normalized to QC2 target values, as was the 

case with the QMDB, Dataset 1, and 
Dataset 2. We conclude that if studies have 
not been normalized to QC target values, 
there is a risk of the ranges not fitting as 
closely. We therefore generally recommend 
using the QMDB metabolite concentration 
ranges as healthy control reference values 
only for studies that have been target-
normalized. 

The metabolite concentration ranges from 
the QMDB were comparable to the ranges 
calculated from Dataset 1 as well as four 
AbsoluteIDQ® p180 healthy control 
datasets (Datasets 2–5). This was evidenced 
by a low percentage of significantly and 
markedly different metabolite 
concentration ranges. The QMDB also 
displayed the lowest number of outliers and 
extreme values, when mean concentrations 
of metabolites across all datasets were 
compared to one another. These results 
indicate that the QMDB reference ranges 
are consistent with other healthy control 
datasets obtained with biocrates 
technology, and that the QMDB is therefore 
suitable for use as a quantitative 
metabolomic reference database for EDTA 
plasma samples from healthy adults. 
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4 Applications of the QMDB 

4.1 Use cases for the QMDB 

The QMDB provides typical metabolite 
concentration ranges for the healthy adult 
population that have been validated for use 
as reference values. The option for 
customized selection of subgroups from the 
healthy population also provides insights 
into metabolomic differences based on 
race/ethnicity, sex, and lifestyle factors. 
The QMDB data can be used in numerous 
ways: 

− Users can utilize the QMDB reference 
ranges in their own studies to determine 
whether their control group is 
representative of the normal healthy 
population. 

− In studies without healthy controls, for 
example comparing two treatments, 
users can compare the concentration 
ranges with the QMDB ranges to 
investigate which treatment results in 
the most normal metabolic values. 

− If researchers discover healthy 
individuals in their study whose 
metabolome differs from the rest of the 
group, they can use the QMDB 
concentration ranges to determine 
whether these values are still within 
normal range, or if the individual is a true 
outlier. This can help exclude outliers, or 
participants who have not adhered to the 
study protocol, for example. 

− For certain research questions 
comparing different subgroups solely 
within the healthy population, 
researchers may be able to skip 
collection of their own samples and data 
and use the QMDB concentration ranges 
for in silico studies. 

− The exported values can be employed by 
data scientists, for instance using 
pattern recognition algorithms to 
identify novel metabolite signatures 
behind participant attributes. 

 

4.2 Case study – Using the QMDB in studies without a healthy control 
group 

Background 

This case study demonstrates how the 
QMDB can be used in studies without a 
healthy control group. In this study, a 
dataset of 69 EDTA plasma samples from 
patients with inflammatory bowel disease 
(IBD) was provided by a collaboration 
partner. The dataset consisted of female 
and male patients diagnosed either with 
Crohn’s disease (CD) or ulcerative colitis 
(UC). CD and UC have been previously 
shown to have different metabolic profiles 

(33). At the time of sample collection, all 
patients had taken an experimental 
treatment targeting IBD, resulting in 
subpopulations of responders and non-
responders. The dataset therefore consisted 
of four subgroups: CD responders (n = 21), 
CD non-responders (n = 14), UC responders 
(n = 18), and UC non-responders (n = 16). 
The nature of the treatment was not 
disclosed to biocrates.  
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Aim 

While the primary goal of the study was to 
investigate the effects of the treatment on 
small molecules and lipids in IBD patients, 
comparison to a control without IBD could 
shed light on the metabolic profile of each 
disease type, and on the potential beneficial 

effects of the treatment. We therefore 
exported a control group from the QMDB 
matching the demographics of this dataset 
(shown in Figure 6) for use in group 
comparisons. 

 
Figure 6: Demographic breakdown of participants in the IBD study.  The IBD patients (n = 69) were categorized by 
sex, age, BMI, diagnosis (CD: Crohn’s disease; UC: ulcerative colitis), and treatment response. 

 

Methods 

The IBD dataset was normalized to QC2 
samples using target values for human 
plasma. This provides an optimal 
normalization to reduce variability between 
the IBD dataset and the QMDB control 
group. 

The filter options in the QMDB were set to 
filter the database based on BMI and age 
range to identify the most relevant samples. 
Summary values (mean, median, standard 
deviation, first and third quartiles, 
interquartile range, and number of samples) 
were exported from the QMDB as natural 
values and as log2-transformed values. 

The same summary values were calculated 
for each metabolite in the IBD dataset and 
pasted into the QMDB Excel template for 
visualizations and statistics provided to 

QMDB users. To produce a more normal 
distribution, the concentration values were 
log2-transformed for all metabolites before 
use in group comparisons. 

The dataset for analysis was consolidated by 
combining the IBD and QMDB summary 
data. The list of metabolites was limited to 
those that were present above the LOD in 
both datasets, resulting in a final set of 473 
metabolites. 

Univariate statistics were used to compare 
the levels of the 473 metabolites between 
the two groups (e.g., IBD vs. QMDB control) 
using the comparison of means in the 
QMDB Excel template to determine the 
p value. The false discovery rate (FDR) was 
calculated using the Benjamini and 
Hochberg method (29). Fold change (FC) 
was calculated from the natural values, 
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comparing the IBD group values to the 
QMDB control. 

Unless otherwise stated, the lists of 
metabolites were filtered by three cut-off 
values to determine the significance of the 
results: p value < 0.001, FDR < 0.05, and 
log2 FC ≥ 0.58 or ≤ -0.58 (corresponding to a 
± 1.5 FC in natural values). These 
comparatively strict thresholds were 
necessary, since the large number of 
samples in the QMDB would otherwise 
result in numerous statistically significant 
differences with a minimal concentration 
FC. 

In addition to comparing the entire IBD 
dataset to the QMDB, we compared the 
metabolome of each IBD type separately to 
the QMDB control. Subgroup comparisons 
were performed using the same approach 
with smaller or different data subsets. In 
comparisons without QMDB involvement, 
the sample number was much lower, and 
the cut-off values could be set to the 
standard for metabolomics analysis 
(p < 0.05, FDR < 0.2). 

 

Results 

Differences in the plasma metabolome of 
IBD patients  

Looking at all 69 samples of the IBD dataset 
and 929 samples from the filtered QMDB 
control dataset, 97 metabolites were 

significantly different between the IBD 
dataset and the QMDB control. These 
included 77 triglycerides (TGs), 11 other 
lipids, and 9 small molecules (Figure 7). 

Interestingly, the TGs with higher levels in 
the IBD patients generally had saturated 
(SFA) or monounsaturated fatty acid (MUFA) 
side chains, whereas the TGs with lower 
levels in IBD mostly had polyunsaturated 
fatty acid (PUFA) side chains. The biggest 
differences were observed for the small 
molecule hypoxanthine, for which there was 
a 2.7 FC among the IBD patients. Of the 
nine small molecules with significantly 
different concentrations between the IBD 
and QMDB control datasets, five are known 
to be microbiome-associated: p-cresol 
sulfate, 3-indole propionic acid (3-IPA), 
proline betaine, 3-methylhistidine, and 
trimethylamine N-oxide (TMAO). They were 
all strongly and significantly decreased in 
the IBD dataset. These metabolites are 
related to microbiome metabolic activity 
and are likely to reflect the impact of IBD on 
the gut microbiome and its contribution to 
the host metabolome. 

Distinct plasma metabolomes in IBD 
subtypes 

Separating the CD and UC patients 
provided a more detailed picture of how 
each disease differs from healthy controls. 
The overlapping and unique differences are 
shown in Figure 8. 

 
Figure 7: Breakdown of significantly different plasma metabolite concentrations in the IBD dataset vs. the QMDB control. In 
total, the mean concentrations of 97 metabolites, including triglycerides (blue), other lipids (yellow), microbiome-associated 
metabolites (green), and other small molecules (purple), were significantly different between the EDTA plasma samples from 
the IBD dataset (n = 69) and the QMDB control (n = 929). 
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Figure 8: Overlap of significantly different plasma metabolite concentrations in the CD and UC subgroups compared to the 
QMDB control. Compared to the QMDB control (n = 660 compared to CD, n = 866 compared to UC), significantly different 
mean concentrations were detected in 117 and 98 metabolites in the EDTA plasma samples from CD patients (n = 35; blue) and 
UC patients (n = 34; yellow) respectively, with an overlap of 48 metabolites. 

 

For the CD patients, there were 116 
metabolites with concentrations that were 
significantly different from the QMDB 
control: 90 TGs, 19 other lipids including 
several PUFAs, and 7 small molecules. The 
pattern of TG saturation observed in the CD 
subgroup was identical to that observed in 
the IBD vs. QMDB comparison: higher levels 
of TGs with SFA and MUFA chains, and 
lower levels of TGs with PUFA side chains 
compared to the QMDB control. 

Interestingly, in the CD patients, the levels 
of the PUFA eicosapentaenoic acid (EPA) 
were even lower than in the total IBD group. 
The omega-3 PUFAs arachidonic acid (AA) 
and docosahexaenoic acid (DHA) were also 
reduced based on the p value but with an 
FC of slightly below 1.5.  

As in the previous comparison, 
hypoxanthine concentrations were 
significantly elevated, while p-cresol 
sulfate, 3-IPA, and 3-methylhistidine were 
significantly lower compared to the control. 

For the UC dataset, there were significant 
differences from the QMDB control in the 
concentration of 97 metabolites. These 
consisted of 72 TGs, 15 other lipids 
including cortisol, and 10 small molecules. 
The same TG saturation pattern was also 
present in this comparison. However, in the 
UC patients, the higher levels of SFA- and 
MUFA-TGs compared to the control were 
often significant, while the reduction in 
PUFA-TGs was only rarely significant. A 
significant increase in cortisol levels was 

observed in the UC patients, but not in the 
CD patients compared to the control. 

Plasma metabolomes in response to IBD 
treatment  

Participants in both disease subgroups 
received an experimental treatment that 
showed efficacy in a subset of each group. 
In this subsection we focus on the 
comparison of the profiles of these 
treatment response subgroups. 

Of the 35 CD patients, 21 were responders 
and 14 non-responders to the treatment. 
No significant differences were identified 
from a direct comparison of these 
subgroups, even with more permissive 
significance thresholds (p < 0.05 and FDR < 
0.2). There was a non-significant trend 
toward higher levels of the two conjugated 
primary bile acids glyco- and 
taurochenodeoxycholic acid (GCDCA and 
TCDCA) in responders, as well as lower 
levels of sarcosine and cortisol (p < 0.07). A 
follow-up study with higher sample numbers 
might yield more conclusive and robust 
results. 

Comparing the subgroup of responders (CD 
and UC combined) to the QMDB control 
group found 95 significant differences, 
while there were 101 differences between 
non-responders and the QMDB control 
(Figure 9). Of these changes, 77 were 
common to both subgroups, and all were 
changed in the same direction, including a 
majority of TGs. The PUFA EPA was lower in 
both subgroups than in the control, while 
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DHA was lower only among the responders. 
Cortisol and aspartic acid were lower only 
among the responders, and proline betaine 

and citrulline were lower only among the 
non-responders. 

 

 
Figure 9: Overlap of significant differences in plasma metabolite concentrations in the IBD treatment response subgroups 
compared to the QMDB control. Compared to the QMDB control (n = 929), significantly different mean concentrations were 
detected in 95 and 101 metabolites in the EDTA plasma samples from responders (n = 39; blue) and non-responders (n = 30; 
yellow) respectively, with an overlap of 77 metabolites. 

 

Discussion 

Hypoxanthine 

The metabolomics results clearly show that 
hypoxanthine was by far the most different 
metabolite between the IBD (both CD and 
UC) and QMDB datasets, reaching a 
remarkably high statistical significance 
even after correction for multiple testing 
(FDR < 2x10-87). The increased levels in 
treated IBD patients strongly suggest that 
the treatment affects purine metabolism. It 
seems likely that the patients received a 
thiopurine drug, which is widely used in the 
treatment of IBD. Thiopurines affect the 
activity of hypoxanthine-guanine 
phosphoribosyltransferase (HPRT), a purine 
salvage enzyme that catalyzes the 
conversion of hypoxanthine and guanine to 
their respective mononucleotides (34). The 
IBD treatment is thus the probable cause of 
the most prominent metabolic difference 
observed. 

Polyunsaturated fatty acids 

In a cohort of 99 patients with IBD (96% CD, 
4% UC) compared to 51 controls, Guan et 
al. identified decreased levels of PUFAs (AA, 
DHA, and EPA) (35). This is consistent with 
our study, where EPA was significantly lower 
in the IBD group, and DHA and AA were 

lower based on two out of three criteria. 
When stratifying the IBD group per disease 
type, there was a trend toward lower levels 
for all three PUFAs compared to the 
controls. In the CD patients, DHA and EPA 
were significantly lower than the control 
values, while only EPA was significantly 
lower among the UC patients. In line with 
this, supplementation with DHA has been 
suggested as a way to decrease the risk of 
developing CD in a prospective study with 
over 200,000 participants from Europe (36). 

However, blood levels of PUFA have been 
shown to correlate with disease activity and 
inflammatory mediators in CD (37), which 
may be a source of variability in groups with 
a broad range of disease activity levels.  

Triglycerides 

Different studies have reported total 
circulating TG levels as being the same, 
(38), or lower (39), or higher in IBD (40) 
than in the respective control group. 
External factors such as lipid-lowering 
drugs are a likely reason for these 
discrepancies. 

In a study of nearly 10,000,000 Korean 
subjects, CD incidence was associated with 
low serum low-density lipoprotein (LDL) and 
high-density lipoprotein (HDL) levels 
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(lipoprotein particles poor in TGs compared 
to chylomicrons and very-low-density 
lipoprotein), but not with serum TG levels, 
while UC incidence was associated with low 
serum TG levels, but not with lipoprotein 
particle levels (39). In another study, serum 
TG levels in 701 IBD subjects (54% CD, 46% 
UC) were especially high in CD patients 
compared to those with UC (40). 

In this case study, all IBD group and 
subgroup comparisons to the QMDB control 
showed a pattern of increased 
concentrations of TGs with SFA and MUFA 
side chains, and decreased TG 
concentrations with PUFA side chains. This 
can be explained at least in part by the 
overall decrease in the PUFAs that 
contribute to TG synthesis. 

Microbiome-derived metabolites 

Several microbiome-associated metabolites 
were lower in the IBD group than in the 
QMDB control. These include 3-IPA, an 
intermediary of tryptophan metabolism by 
the gut microbiome; and TMAO, indoxyl 
sulfate, and p-cresol sulfate, which are 
derivatives of the microbial metabolites 
TMA, indole, and p-cresol, respectively. 

IBD is a group of inflammatory intestinal 
diseases that have a major impact on the 
balance of the gut microbiome and 
therefore the concentrations of metabolites 
synthesized exclusively by microbial 
populations. IBD also affects gut transit 
time. Together, this may have a strong 
influence on metabolite levels and 
contribute to the observed decrease in gut 
microbiome-related metabolites. 

Metabolome differences between 
responders and non-responders 

One of the goals of the analysis was to 
determine whether the metabolome of the 
responders was more similar to the normal 
healthy metabolome than the metabolome 
of the non-responders. The fact that there 
were more marked and significant 
differences between the non-responders 
and the QMDB than when comparing the 
responders to the QMDB suggests that this 
may indeed be the case. However, the 
number of significantly and markedly 
different metabolite concentrations differed 
only by 6%, preventing us from reaching a 
definitive conclusion.  

 

Conclusions 

By comparing the metabolic profile of IBD 
patients to a representative subpopulation 
of the QMDB, we were able to identify some 
of the hallmarks of IBD. Differences in the 
concentrations of PUFAs, TGs, and 
microbiome-associated metabolites were 
consistent with the differences between IBD 
patients and healthy controls previously 
described in the literature. The treatment-
specific increase in hypoxanthine also 
confirmed a metabolic response to the 
treatment in line with expectations. 

Overall, this example shows that the QMDB 
is able to provide a healthy control group 
for statistical analysis in studies with EDTA 
plasma samples from human adults with 
disease. 

 

5 Summary 

The QMDB provides quantitative EDTA 
plasma concentration ranges for human 
adults derived from analysis with the 
biocrates standardized MxP® Quant 500 kit. 
In this application note, we explain how the 
QMDB was developed and the samples 
included in the dataset. We also describe 

the demographics of the QMDB and how 
the data was validated. The validation 
shows that the QMDB metabolite 
concentration ranges are comparable to 
those of other healthy control datasets 
obtained with biocrates technology, 
demonstrating that the QMDB can be 
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combined with independent datasets 
measured at different sites. Finally, we list 
use cases for the QMDB and report in detail 
a case study in which the QMDB was 
successfully used as an external control in a 
study without a healthy control group. The 
statistical analysis confirmed the suitability 
of the QMDB as a source of healthy external 
control datasets. 

The evidence compiled in this application 
note thus suggests that the QMDB is 
suitable for use as a quantitative 
metabolomic reference database providing 
representative metabolite concentration 
ranges for EDTA plasma samples from the 
healthy adult population and customized 
subpopulations. The added value provided 
by this resource will be extremely beneficial 
to biocrates clients when analyzing and 
interpreting their data. 
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